Accelerator-Aware Pruning for Convolutional Neural Networks
نویسندگان
چکیده
منابع مشابه
A Data-Reuse Aware Accelerator for Large-Scale Convolutional Networks
This paper presents a clustered SIMD accelerator template for Convolutional Networks. These networks significantly outperform other methods in detection and classification tasks in the vision domain. Due to the excessive compute and data transfer requirements these applications benefit a lot from a dedicated accelerator. The proposed accelerator reduces memory traffic by loop transformations su...
متن کاملPruning Convolutional Neural Networks for Resource Efficient Transfer Learning
We propose a new framework for pruning convolutional kernels in neural networks to enable efficient inference, focusing on transfer learning where large and potentially unwieldy pretrained networks are adapted to specialized tasks. We interleave greedy criteria-based pruning with fine-tuning by backpropagation—a computationally efficient procedure that maintains good generalization in the prune...
متن کاملPruning Convolutional Neural Networks for Image Instance Retrieval
In this work, we focus on the problem of image instance retrieval with deep descriptors extracted from pruned Convolutional Neural Networks (CNN). The objective is to heavily prune convolutional edges while maintaining retrieval performance. To this end, we introduce both data-independent and data-dependent heuristics to prune convolutional edges, and evaluate their performance across various c...
متن کاملPruning Convolutional Neural Networks for Resource Efficient Inference
We propose a new formulation for pruning convolutional kernels in neural networks to enable efficient inference. We interleave greedy criteria-based pruning with finetuning by backpropagation—a computationally efficient procedure that maintains good generalization in the pruned network. We propose a new criterion based on Taylor expansion that approximates the change in the cost function induce...
متن کاملSnowflake: A Model Agnostic Accelerator for Deep Convolutional Neural Networks
Deep convolutional neural networks (CNNs) are the deep learning model of choice for performing object detection, classification, semantic segmentation and natural language processing tasks. CNNs require billions of operations to process a frame. This computational complexity, combined with the inherent parallelism of the convolution operation make CNNs an excellent target for custom accelerator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2020
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2019.2911674